数学的读书笔记(通用3篇)

2020年07月14日17:52:43

数学的读书笔记(通用3篇)

当赏读完一本名著后,大家一定对生活有了新的感悟和看法,此时需要认真思考读书笔记如何写了哦。是不是无从下笔、没有头绪?下面是小编为大家整理的数学的读书笔记,欢迎阅读,希望大家能够喜欢。

  数学的读书笔记1

在数学课堂教学中,既需要注重学生知识、能力与培养,又要注重学生情感态度的培养。应该说,情感态度的培养比知识能力的培养更重要。小学数学课程标准中明确提出:“培养孩子积极思考的态度,使孩子在学习过程中增强学习数学的信心,培养孩子学习数学的兴趣。”我从这几句浅显的话语中悟出了许多深刻的道理。

现代社会是一个知识经济爆炸的年代,社会对孩子的需求也越来越高,作为新一代的教师,我们不仅要培养出成绩优异的孩子,而且要培养出具有自信心的良好心态的孩子。因为实践证明,良好的心态是成功的第一保障,现代儿童的心理问题已经给我们的教育提出了许多严峻的课题。因此,我认为数学课堂上也要注重学生情感态度的培养。

在这个问题上,我认为可以从以下三个方面重点培养,主要是积极主动的参与意识;学习数学的自信心;学习数学的兴趣。仔细思考了一下这三个方面应该是互相联系、辨证统一的。有了积极主动的参与意识,自信心就慢慢培养了起来,有了学习数学的自信心就有了学习数学的兴趣,如何培养孩子这些方面的情感态度。

首先,在课堂上要充分体现以学生为主体,真正体现学生是学习的主人,创设民主、与谐的课堂氛围。在课堂上,教师不能以传统填鸭式的方式教学,要让学生通过操作、实验、交流、讨论等活动,自己经历知识的形成过程,自己总结出结论,充分体现学生自主学习、自主探索,这样慢慢的培养起学生的自主参与意识。

其次,要多给孩子鼓励,多给孩子信心,任何孩子在成长中都会犯这样、那样的错误,在数学学习中也难免如此。这时,老师不要一味地批评,因为过度地批评会让孩子失去信心,会让孩子缺乏思考的勇气,久而久之就会使孩子只学会接受,没有自己的思考与思想,更谈不上学习的自信心与兴趣了。所以,我们在教学中应该多以鼓励为主,多给孩子一些信心,相信你的学生是最棒的。

最后,我认为除了在思想、情感上多以积极的心态培养孩子外,还应该给孩子们创设学习数学的良好氛围,让孩子们在一个喜欢数学的环境中学习,受到熏染,培养孩子的兴趣。

自信心是成功的第一步阶梯,作为一个教师,有义务也有责任为这一步阶梯奠基,要让学校成为培养孩子自信心的摇篮,不要让孩子的自信心被扼杀在了摇篮里。

我要努力让自己的每节课既要注重学生知识能力的培养,又要注重情感态度的培养。

  数学的读书笔记2

暑假读了黄先明的`《高中数学学习方法》。

首先,他告诉我们高中数学学习要注意以下三点。

一、课内重视听讲,课后及时复习。重视课内的学习效率,要在做各种习题之前将老师所讲的知识点回忆一遍,正确掌握各类公式的推理过程,在每个阶段的学习中要进行整理与归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。

二、适当多做题,养成良好的解题习惯。从基础题入手,以课本上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决能力,掌握一般的解题规律。对于一些易错题,可备有错题集。

三、调整心态,正确对待考试。首先,应把主要精力放在基础知识、基本技能、基本方法这三个方面上,在考试前要做好准备,练练常规题,把自己的思路展开。

其次,他将初中数学与高中数学进行了比较。

1、知识差异。高中数学知识广泛,将对初中的数学知识推广与引伸,也是对初中数学知识的完善。

2、学习方法的差异。现在高考数学考察,旨在考察学生能力,避免学生高分低能,避免定势思维,提倡创新思维与培养学生的创造能力培养。

3、学生自学能力的差异。高中的知识面广,知识全部要教师训练完高考中的习题类型是不可能的,只有通过较少的、较典型的一两道例题讲解去融会贯通这一类型习题,如果不自学、不靠大量的阅读理解,将会使学生失去一类型习题的解法。最重要的,是告诉了我们如何建立好的学习数学兴趣。

(1)课前预习,对所学知识产生疑问,产生好奇心。

(2)听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具与模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。

(3)思考问题注意归纳,挖掘学习的潜力。

(4)听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的?

(5)把概念回归自然。

总结起来,高中数学学习就是要:多质疑、勤思考、好动手、重归纳、注意应用。

  数学的读书笔记3

1、数学是抽象的,理解数学的一个层面便是,赋予数学直观和具体的意义。

2、过份强调数学的形式结构是个错误。

3、抽象只有在坚实的经验基础上才有意义,此外,引进抽象观念后,应该用具体问题来显示她们的用处。

4、现代数学好的方向是它强调几个基本的概念,诸如,对称、连续和线性。

5、几何直观仍然是领悟数学的最有效的渠道。几何直观就是对于抽象的东西,能够在头脑中像画画一样描绘出来并加以思考。

6、数学教学与人的素质发展相结合,是数学教育的最主要的宗旨。

7、几何图形是一种数学符合,是“直观空间的帮助记忆的符号”,是“图像化的公式”。

8、数学真正要办的事情是解决具体的问题。理解一个理论的最好的办法是找到一个具体问题,然后研究该理论的一个样本实例,一个能说明一切的典型例子。

9、针对一个数学理论,举出典型实例、反例、特例(即特殊情形)等,都市具体地理解这种数学理论的方法。

10、逻辑用于证明,直觉用于发明。

11、在理解数学的过程中,领悟推理链中所隐含的整体性、次序性、和谐性,达到对推理链的整体把握,乃至能够预见证明,这种领悟叫做直觉。

12、记忆在数学中是重要的,但不必去记住数学事实。

13、数学直觉意味着不严格;意味着可见;意味着缺乏证明时的似真性和可信性;意味着不完全;意味着依赖物理模型或某些主要例子;意味着与详细或分析相对立的笼统或综合。